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We have observed that in problems dealing with the heating of a plate and a 
half-space by a moving source, with consideration of surface oxidation, the 
quasisteady solution is multivalued. 

The problem of heating metals with concentrated sources of energy is presently of con- 
siderable interest. The temperature fields that arise within a plate and a half-space when 
subjected to heating with nonmoving and moving surface heat sources, in the case of constant 
values for the thermophysical quantities, have been studied in detail in [I, 2]. The ther- 
mophysical coefficients in their dependence on temperature have been accounted for in [3, 4], 
while in [5, 7] we find calculations of the processes of metal heating by a nonmoving source 
in an oxidizing atmosphere. The problem of heating a semibounded body with a moving spot 
source has been examined in [8] with consideration given to the oxidation of the surface, 
and it was demonstrated that a change in the coefficient of absorption with a reduction in 
velocity is discontinuous in nature. However, no detailed calculations in the region of the 
"discontinuity" were undertaken. In the present paper we examine the problem of using a 
moving source to heat a plate and a half-space, while making provision for changes in absorp- 
tivity due to oxidation. A detailed study has been undertaken here into the behavior of the 
solution and we have observed the existence of regions of parameters in which it is multi- 
valued. 

Let us examine heating in an oxidizing atmosphere of a semibounded metal body by means 
of a spot source of power Q, moving at velocity v. An oxidation reaction takes place at the 
surface of the metal and an oxidation layer is produced. Let us examine the quasisteady pro- 
blem, neglecting the growth of the oxide film at temperatures close to the initial tempera- 
ture To. In this case, the distribution of the temperature through the metal, without consi- 
deration of exchange through the thickness of the oxide, nor without consideration given to 
the phase transitions and to the exchange of heat with the ambiant medium, is determined 
from the following formula [i] 

T =  A,Q exp +To. (1) 
2n~R 2a 2a 

The origin of the Cartesian x, y coordinate system is connected to the moving source: the 
direction of the x axis is opposite to that of the vector v. 

Generally speaking, the absorption factor is a nonmonotonic function of the oxide thick- 
ness g [9]. Prior to the first maximum, following [7], we will take the quadratic approxima- 
tion A(~); with larger ~ we will assume that the coefficient of absorption is constant: 

2 A(~ = min{Ao(1 q- 0H), Ao(1 Jr b~)}, (2) 

with A s = A(~s), ~s = 51x=y=0- 
The rate of oxide film growth is initially determined by the parabolic oxidation law 

[I0], subsequent to which the gas-phase limitation regime sets in, and here the rate of 
oxide growth will be assumed to be contant [II]. Thus, for the points of the x axis we have: 

d x  t So T (x)  ' " 
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Fig. i. The half-width of the surface area heated higher than i000 K as a function r 
the velocity of source motion: a) half-space; b) plate; i) vs = 3.4"i0-4; 2) 6.1"10-4; 
3) 10.6"10 -4 m/sec; dashed curves represent the results from [8]. 4, m; v, m/see. 

Fig. 2. The temperature behind the source as a function of the velocity of strip-source 
motion over the plate, vs = 3.4"10 -4 m/sec: i) d = 0; 2) 0.4; 3) i mm. T, K. 

In accordance with (i) 

T(x)= 2~]x[AJ-~Q e x p ( - ~ - ) +  Towhen x<0.  

Integrating (3) from -~ to 0 (with T < 400 K d$/dx assumed to be equal to zero) wi:h 
the initial condition ~ = ~0 when x = -~ and using the condition $(0) = Ss, we obtain an 
equation for the determination of ~s (and, consequently, for the determination of As). All 
subsequent calculations were performed for values of ~ = 20 W/(m'deg), a = 10 -s m/sec, !) = 
3.3-10 -2 m2/sec, T d = 3.3"10 ~ K, b = 2.1012 m -2, A 0 = 0.i, SM = 2 Bm, corresponding to ,?i; 
T o = 295 K, $0 = 0.2 ~m. 

Figure la shows the half-width of the surface area heated higher than 1000 K as a :!unc- 
tion of the velocity of source motion in the case of Q = 12.6 W for various values of v!~. 
As we can see from the figure, in all three cases, the quasisteady solution in the region 
of the "discontinuities" in [8] is not uniquely defined. Three values of & (~nd correspond- 
ingly, of A s ) correspond to a single value for the displacement velocity of the source in 
some range of velocities. This leads to a situation in which, depending on the direction of 
the change in velocity, the discontinuity in the quasisteady solution comes about for a vari- 
ety of solution values. Indeed, if the velocity of source motion is gradually reduced Irom 
the value corresponding to the point A (Fig. la) to a value corresponding to the point ~, 
the half-width ~ will increase smoothly in accordance with the curve AB. However, with a 
further reduction in velocity A will increase discontinuously to values corresponding tc the 
point D. If the velocity is then increased, the reverse discontinuity to the curve AB will 
now occur at point C. Let us note that the discontinuous change in the width of the heated 
zone will actually occur at times on the order of the time required to establish the quasi- 
steady temperature distribution within the metal. The BC segment in which d&/dv > 0, appar- 
ently, is not stable and can not be achieved in actual practice. Indeed, with a slight in- 
crease in the velocity of source motion, the temperature of the metal surface becomes an in- 
creasingly pronounced diminishing function of the distance from the source in the direction 
of its motion. Moreover, as a consequence of the increase in the velocity of motion, th~ 
oxidation time for the surface point is reduced to that instant of time at which it passes 
through its source. The thickness ~s of the oxide layer, the absorptivity A s and, conse- 
quently, A are therefore reduced. This leads to a descent from the segment BC. 

Let us note that the physical nature of nonunique definition is associated, at leasu 
for the curves CD and AB, with the fact that the value for the power of the source is one 
and the same, and its effective values diverge significantly because the corresponding coef- 
ficients of absorption differ several times over. Indeed, in the AB segment the absorpt:_vi- 
ty is small and the temperature ahead of the source is therefore inadequate for an intensive 
growth of the oxide. This leads in turn to retention of limited absorptivity. In the CD 
segment the absorptivity is high and the temperature ahead of the source is sufficient for 
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segment the absorptivity is high and the temperature ahead of the source is sufficient for 
intensive growth of the oxide and absorption consequently remains high. 

Results from analogous calculations for a thin plate heated by a moving spot source 
with a linear power of QI = 2"105 Q/m can be found in Fig. lb. The temperature distribution 
in this case was determined from the following formula [I]: 

where K 0 is a Bessel function of imaginary argument. 

As we can see from Fig. I, in the cases under consideration here, the region of nondef- 
initeness in the problem pertaining to the heating of a plate is considerably broader than 
in the problem encountered in the heating of a half-space. 

Let us also examine the one-dimensional problem of the heating of a plate by a linear 
source with the linear density Q2 = 3"107 W/m2. The temperature distribution in this case 
is described by formula (i) 

A,Q2a exp ( VX v l x [ ) 
T=To+ ~v 2a 2a " 

R e s u l t s  from c o r r e s p o n d i n g  c a l c u l a t i o n s  a r e  shown in F ig .  2 ( cu rve  1) in  t he  form of  
a relationship between the temperature T s at the center of the source and the velocity. As 
we can see from the figure, the effect of nondefiniteness in the quasisteady solution is 
present in this case as well. 

For purposes of examining the effect that the finiteness of the source dimensions has 
on the nature of the quasisteady solution, we carried out appropriate calculations for strip 
sources with a constant intensity and the same total linear power. Figure 2 shows the re- 
sults of such calculations for sources of width d = 0.4 and 1 nun. As we can see, the nonde- 
finiteness of the relationship between the temperature T s hehind the source and v is re- 
tained in this case, although it becomes less clearly defined as the width of the source is 
increased. 

Thus, consideration of the metal surface oxidation in the case of heating with a shift- 
ing concentrated source of energy significantly affect the heating pattern. The quasisteady 
solution is not uniquely defined and the position of the boundaries of the nonunique region 
depends strongly on the magnitude of the rate of oxide growth in the gas-phase limitation 
regime. 

NOTATION 

T, surface temperature; x, y, z, Cartesian coordinates; R = ~ ~ ,  r = yx2+y ----~ ; X, 
a, A, coefficients of thermal conductivity, thermal diffusivity, and absorption; v, veloci- 
ty of source motion; Q, source power; ~, oxide thickness; D, parabolic oxidation law con- 
stant; Td, activation energy of thermodynamic reaction; vs rate of oxide growth in gas- 
phase limitation regime; A, half-width of surface area heated above i000 K; QI,2, linear 
values of source power. Subscripts: 0, initial value; s, value at coordinate origin. 

LITERATURE CITED 

i. N. N. Rykalin, Calculation of Thermal Processes in Welding [in Russian], Moscow (1951). 
2. G. Karslou and D. Eger, The Conduction of Heat in Solids [Russian translation], Moscow 

(1964). 
3. N. N. Rykalin, A. A. Uglov, and M. M. Nizametdinov, Kvant. Elektronika, ~, No. 7, 1509- 

1516 (1977). 
4. A. A. Oglov, V. V. Ivanov, and A. I. Tuzhikov, Fiz. Khim. Obrabotki Mat., No. 4, 7-11 

(1980). 
5. N. N. Rykalin, A. A. Uglov, I. Yu. Smurov, and A. A. Volkov, Fiz. Khim. Obrabotki Mat., 

No. I, 140-141 (1983). 
6. N. A. Kirichenko and B. S. Luk'yanchuk, Kvant. Elektronika, 10, No. 4, 819-825 (1983). 
7. A. A. Uglov, I. Yu. Smurov, and A. A. Volkov, The Action of Concentrated Flows of Ener- 

gy on Materials [in Russian], Moscow (1985), pp. 137-154. 
8. N. R. Anisimov, Inzh.-Fiz. Zh., 56, No. 5, 858-859 (1989); Deposited in VIITI on Nov. 

16, 1988, No. 8133-B88. 

1530 



9. A. A. Vedenov and G. G. Gladush, Physical Processes in the Laser Treatment of Materials 
[in Russian], Moscow (1985). 

I0. K. Hauffe, Reactions in Solids and at Their Surfaces [Russian translation], Mosc~ow ~1969). 
ii. A. V. Burmistrov, Zh. Tekh. Fiz., 51, No. 8, 1733-1735 (1981). 

1531 


